Quantum Chaos, Irreversible Classical Dynamics, and Random Matrix Theory
نویسندگان
چکیده
منابع مشابه
Quantum chaos, irreversible classical dynamics, and random matrix theory.
The Bohigas-Giannoni-Schmit conjecture stating that the statistical spectral properties of systems which are chaotic in their classical limit coincide with random matrix theory (RMT) is proved. A new semiclassical field theory for individual chaotic systems is constructed in the framework of a nonlinear s model. The low lying modes are shown to be associated with the Perron-Frobenius (PF) spect...
متن کاملQuantum dynamics and Random Matrix theory
We compute the survival probability of an initial state, with an energy in a certain window, by means of random matrix theory. We determine its probability distribution and show that is is universal, i.e. caracterised only by the symmetry class of the hamiltonian and independent of the initial state. In classical mechanics, temporal chaos is caracterised by the extreme sensibility of a trajecto...
متن کاملQuantum chaos, random matrix theory, and the Riemann ζ-function
Hilbert and Pólya put forward the idea that the zeros of the Riemann zeta function may have a spectral origin : the values of tn such that 1 2 + itn is a non trivial zero of ζ might be the eigenvalues of a self-adjoint operator. This would imply the Riemann Hypothesis. From the perspective of Physics one might go further and consider the possibility that the operator in question corresponds to ...
متن کاملQuantum Chaos and Random Matrix Theory -some New Results
New insight into the correspondence between Quantum Chaos and Random Matrix Theory is gained by developing a semiclassical theory for the autocor-relation function of spectral determinants. We study in particular the unitary operators which are the quantum versions of area preserving maps. The relevant Random Matrix ensembles are the Circular ensembles. The resulting semiclassical expressions d...
متن کاملWave packet dynamics in energy space, random matrix theory, and the quantum-classical correspondence
We apply random-matrix-theory (RMT) to the analysis of evolution of wave packets in energy space. We study the crossover from ballistic behavior to saturation, the possibility of having an intermediate diffusive behavior, and the feasibility of strong localization effect. Both theoretical considerations and numerical results are presented. Using quantal-classical correspondence considerations w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 1996
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.76.3947